

Multi-camera Vehicle Tracking and Re-identification on AI City Challenge 2019 Yucheng Chen¹, Longlong Jing², Elahe Vahdani², Ling Zhang², Mingyi He¹, and Yingli Tian² ¹Northwestern Polytechnical University ²The City University of New York

Introduction

1) Tracks:

- Multi-camera Vehicle Tracking
- Vehicle Re-identification

2) Achievements:

• The proposed **enhanced multi-granularity network** with multiple branches outperforms the current state-of-the-art vehicle ReID method by **16.3%** on Veri776 dataset.

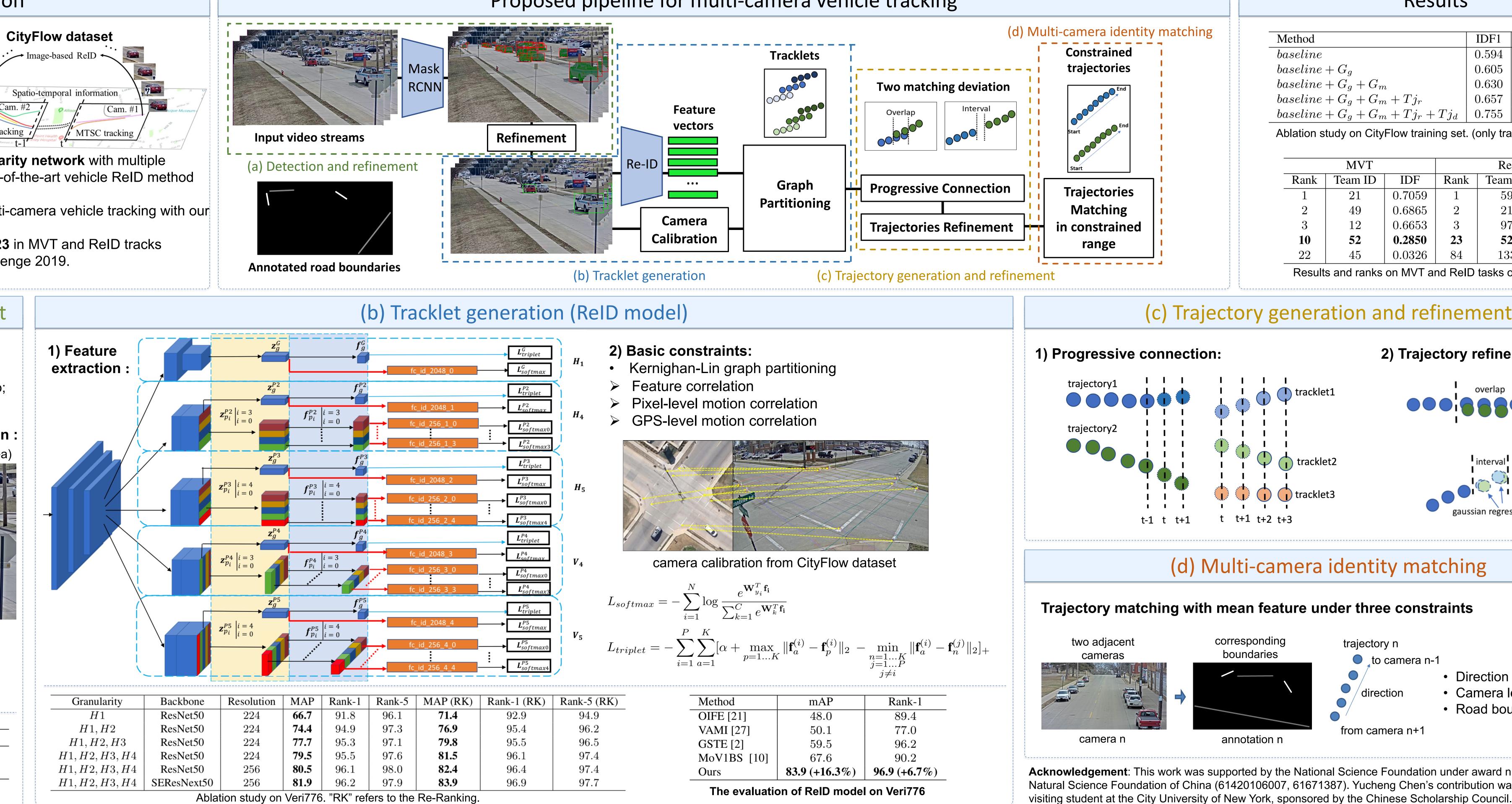
Cam. #

MTSC tracking

- We designed an offline pipeline for multi-camera vehicle tracking with our annotated road boundaries.
- Our algorithms are ranked the **10** and **23** in MVT and ReID tracks respectively at the NVIDIA AI City Challenge 2019.

(a) Detection and refinement

1) Basic constraints:


Non-Maximum Suppression (NMS); Bounding box area/height/width/aspect ratio; The ratio of effective area (mask) ...

2) Foreground-background comparison :

Background (averaged from non-detection area)

Detection results, without and with refinement

Proposed pipeline for multi-camera vehicle tracking

	Resolution	MAP	Rank-1	Rank-5	MAP (RK)	Rank-1 (RK)	Rank-5 (RK)	Metho
	224	66.7	91.8	96.1	71.4	92.9	94.9	OIFE
	224	74.4	94.9	97.3	76.9	95.4	96.2	VAMI
	224	77.7	95.3	97.1	79.8	95.5	96.5	GSTE
	224	79.5	95.5	97.6	81.5	96.1	97.4	MoV1
	256	80.5	96.1	98.0	82.4	96.4	97.4	Ours
	256	81.9	96.2	97.9	83.9	96.9	97.7	
ation atudy on Vari776 "DV" rafare to the De Denking							The	

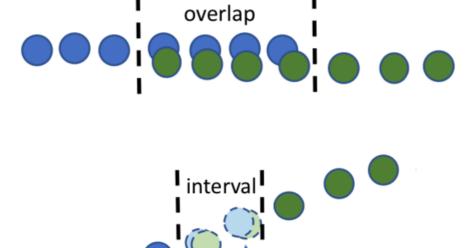
Results

LONG BEACH

CALIFORNIA

June 16-20, 2019

Method	IDF1	IDP	IDR
baseline	0.594	0.449	0.878
$baseline + G_g$	0.605	0.459	0.890
$baseline + G_g + G_m$	0.630	0.477	0.926
$baseline + G_g + G_m + Tj_r$	0.657	0.499	0.962
$baseline + G_g + G_m + Tj_r + Tj_d$	0.755	0.647	0.907


Ablation study on CityFlow training set. (only trained on Veri776)

	MVT		ReID			
Rank	Team ID	IDF	Rank	Team ID	mAP	
1	21	0.7059	1	59	0.8554	
2	49	0.6865	2	21	0.7917	
3	12	0.6653	3	97	0.7589	
10	52	0.2850	23	52	0.4096	
22	45	0.0326	84	133	0.0003	

Results and ranks on MVT and ReID tasks of AIC2019.

(c) Trajectory generation and refinement

2) Trajectory refinement:

(d) Multi-camera identity matching

trajectory n • to camera n-1

direction

- Direction constraint
- Camera location constraint
- Road boundary constraint

Acknowledgement: This work was supported by the National Science Foundation under award number IIS-1400802 and Natural Science Foundation of China (61420106007, 61671387). Yucheng Chen's contribution was made when he was a